E-320: Probing Strong-field QED at FACET-II

FACET-II PAC Meeting
October 28, 2020

Sebastian Meuren
(for the E-320 collaboration)
E-320: general objective & context

- **Mission**: probe the regime $a_0 \gg 1, \chi \gtrsim 1$ for the first time (qualitative difference to E-144: $a_0 \lesssim 1, \chi \lesssim 1$)
- **Laser** (baseline aim): 0.6 J energy (Strehl 0.7), 35 fs, 2.0 μm FWHM spot: $a_0 \approx 10$ ($I \approx 2 \times 10^{20}$ W/cm²)
- **Electrons**: 13 GeV, collide at 28.07°: $\chi \approx 1.4$ (2nC, Gaussian: $\sigma_x = 24$ μm, $\sigma_y = 30$ μm, flattop: $L_z = 250$ μm)
E-320: initial milestones

- **2021 (spring)**: calibrate detectors, measure backgrounds, access perturbative regime: $a_0 \lesssim 1$ ($\sim 10^{18} \text{W/cm}^2$)
- **2021 (summer)**: observe the transition to nonperturbative laser-electron interactions: $a_0 \gtrsim 5$ ($\gtrsim 10^{19} \text{W/cm}^2$)

- **2021 (winter)**: quantum radiation reaction (electrons emitting $n \gtrsim 5$ photons)
- **2021 (winter)**: QED vacuum breakdown: $a_0 \gtrsim 10$ ($\gtrsim 2 \times 10^{20} \text{W/cm}^2$)

- **2022 (spring)**: LCFA breakdown requires Compton / pair spectrometer
 (Naranjo & Rosenzweig)

Detector response: Mir-Ali Hessami & Storey
E-320: overview

Main contributors: IP: Nielsen & Salgado/Zepf; FACET IP coordination: Ariniello; IP diagnostics: Chen & Ekerfelt; New beamline: Storey; PCAL: Salgado/Zepf; DT detectors: Storey & San Miguel Claveria
Coordination: Gerstmayr, Meuren, Reis, Yakimenko

- OAP alignment laser & focus diagnostic
- Laser-electron overlap (space & time)
- Electron & gamma detection: dump table (shared diagnostic)
- “Low-energy” electrons: detector in EDC chamber
- Single positron detection: rudimentary tracking capability, Cherenkov calorimeter (PCAL)

Sebastian Meuren (for the E-320 collaboration)
E-320: IP – fully ready by 11/25

High-intensity laser focus
- 1st OAP alignment: two steering mirrors or via OAP tip/tilt + e-beam translation
- Diagnostic: prism + microscope objective, separately retractable, xyz motorized

Alignment Targets
- Separate assembly
- Fully motorized (xyz)
- Beam/laser spatial overlap: Ce:YAG screen/needle
- Pinhole for alternative OAP alignment

OAP alignment proof of principle
- Laser focusability test: FWHM spot only $\leq 18\%$ larger than diffraction limit (deformable mirror)
- Significant improvement in Strehl ratio expected with $\lambda/10$ OAPs (arrival 11/25)

Common OAP base plate
- Height adjustment (manual or stepper + belt)
- Currently manufactured (ready: 10/30, arrival: 11/16)
- Possibility for interferometric alignment, facilitates shot-to-shot diagnostic of the laser focus quality

Measurement/Analysis: Chen & Isele
E-320: positron detection: ready by 12/11

- Challenge: measure $\lesssim 1$ positron/shot: dedicated new detector area
- Combine calorimeter & tracking: best possible background rejection
- Energy range 2.5-5.7 GeV (adjustable via dipole 1-2.3, 2-4.5, 3.0-6.8)
- Cherenkov calorimeter calibrated (ELBE), ready for shipment to SLAC

PCAL design: Salgado/Zepf
(with input from Aarhus & Stanford)
Original PDC/EDC background simulations: Cavanagh/Sarri
Update: Watt
E-320: electron & gamma detectors

New Beamline: PDC & EDC
Dump Table

Quantum beamstrahlung (mostly single emissions)

Emission of multiple photons (quantum radiation reaction)
Stochastic emission (finite lifetime)

Breakdown of the LCFA at small photon energies

- Spectrum: 160 keV – 23 MeV
- 1% energy resolution ≥ 1 MeV

Tamburini

Mir-Ali Hessami & Storey

Sebastian Meuren (for the E-320 collaboration)

Baby Compton: Naranjo/Rosenzweig (funding via DARPA & DOE Stewardship)
New Beamline (PDC & EDC): Storey
Dump Table: Storey & San Miguel Claveria
E-320: future science program

Beam-Beam Collisions: $\chi \geq 10$ already for 3 TeV CLIC

Beamstrahlung Mitigation: Short-Bunch Paradigm
- plasma lens: transverse size $\leq \mu$m
- 90° collisions: interaction time ≤ 6 fs

Laboratory Astrophysics: Understanding Magnetars
$\chi \geq 2$: onset of QED cascades

Photon-Photon Collider (gamma/optical):
2nd IP \rightarrow Vacuum Birefringence
- 12.9 keV x-ray + 100 PW \leftrightarrow 6 GeV γ + 100 TW

Quantum Coherence in Extreme Conditions
- Use two-color laser with phase control
- Coherent e^-e^+ re-collisions

Sebastian Meuren (for the E-320 collaboration)
Laser upgrade: 100 TW scale to start probing \(\chi \gg 1 \)

<table>
<thead>
<tr>
<th>Energy [J]</th>
<th>Duration [fs]</th>
<th>Power [TW]</th>
<th>Diameter [mm]</th>
<th>Optics</th>
<th>OAP [\mu m]</th>
<th>Spot [\mu m]</th>
<th>Strehl</th>
<th>Intensity [W/cm²]</th>
<th>(a_0)</th>
<th>(\chi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Existing laser</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td>50</td>
<td>5.6</td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>0.4</td>
<td>4.7 × 10¹⁹</td>
<td>4.7</td>
<td>0.68</td>
</tr>
<tr>
<td>0.44</td>
<td>40</td>
<td>10</td>
<td>40</td>
<td>3”</td>
<td>2.0</td>
<td>2.00 (1.67)</td>
<td>0.6</td>
<td>1.3 × 10²⁰</td>
<td>7.8</td>
<td>1.1</td>
</tr>
<tr>
<td>0.60</td>
<td>35</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.7</td>
<td>2.3 × 10²⁰</td>
<td>10</td>
<td>1.5</td>
</tr>
<tr>
<td>Desired upgrade</td>
<td></td>
</tr>
<tr>
<td>1.28</td>
<td>35</td>
<td>34</td>
<td>60</td>
<td>4”</td>
<td>1.8</td>
<td>1.85 (1.48)</td>
<td>0.6</td>
<td>5.0 × 10²⁰</td>
<td>15</td>
<td>2.2</td>
</tr>
<tr>
<td>4.0</td>
<td>35</td>
<td>107</td>
<td>100</td>
<td>6”</td>
<td>1.9</td>
<td>1.94 (1.55)</td>
<td>0.7</td>
<td>1.7 × 10²¹</td>
<td>28</td>
<td>4.0</td>
</tr>
</tbody>
</table>

- **Energy**: Total energy after compressor
- **Duration**: Gaussian temporal profile, intensity FWHM
- **Power**: Intensity FWHM (limit given by Airy disk)
- **Diameter**: Flattop, diameter before OAP

Beamline upgrade: introduce 2\(^{nd}\) IP for photon-photon collider

- Compton backscattering: 13 GeV + 3\(^{rd}\) harmonic → 6 GeV gamma photons, polarization control
- Requires a dogleg / chicane to deflect main beam
- Access to a new level of control, rich new physics program, e.g., vacuum dichroism/birefringence

Detector upgrades

- Pair spectrometer (access to full gamma spectrum)
- Silicon tracking detectors (positron energy spectrum)
E-320 is ready for tests & installation

- IP assembly
 - Almost everything in hand
 - OAP coating (ARO): 11/25
 - OAP mount (Thorlabs): 11/16
 - Baseplate (Jena): 11/16
 - POC: Gerstmayr/Reis/SM

- Positron calorimeter
 - Manufactured in Jena
 - Calibrated at ELBE
 - DAQ integration started
 - Ready to be shipped
 - POC: Salgado/Zepf

- New beamline (PDC/EDC)
 - Passed safety review
 - In production (MDC): 12/11
 - Installation: January 2021
 - POC: Storey

- Baby Compton
 - Designed by UCLA, currently in production
 - Installation:
 - POC: Naranjo/Rosenzweig

- Deformable mirror
 - Successfully tested
 - (\(\lambda/1\) OAP): spot size
 - \(\leq 18\%\) beyond DL
 - POC: Chen/O’Shea

- Experimental review
 - Started in August 2020
 - POC: Gerstmayr/SM & Clarke

- Fiber laser
 - Single-mode fiber laser 785nm, >50mW (in hand)
 - OAP interferometer
 - POC: Chen/Gerstmayr/Reis

- Radiation safety review
 - Analysis: 9-page document
 - Submitted in April 2020
 - POC: Chen/SM & Clarke

E-XYZ & FACET: thank you for the collaborative spirit
Thank you for your attention
<table>
<thead>
<tr>
<th>Institution</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carleton University, Ottawa, Ontario, Canada</td>
<td>Thomas Koffas</td>
</tr>
<tr>
<td>Aarhus University, Aarhus, Denmark</td>
<td>Christian Nielsen, Allan Sørensen, Ulrik Uggerhøj</td>
</tr>
<tr>
<td>École Polytechnique, Paris, France</td>
<td>Sébastien Corde, Pablo San Miguel Clave</td>
</tr>
<tr>
<td>Technical University (TU) of Darmstadt</td>
<td>Christian Rödel</td>
</tr>
<tr>
<td>Max-Planck-Institut für Kernphysik, Heidelberg, Germany</td>
<td>Antonino Di Piazza, Christoph H. Keitel, Matteo Tamburini, Tobias Wistisen</td>
</tr>
<tr>
<td>Helmholtz-Institut Jena and University of Jena, Germany</td>
<td>Harsh, Felipe Salgado, Jannes Wulff, Matt Zepf</td>
</tr>
<tr>
<td>Universidade de Lisboa, Portugal</td>
<td>Thomas Grismayer, Luis Silva, Marija Vranic</td>
</tr>
<tr>
<td>Imperial College London, UK</td>
<td>Stuart Mangles, Robbie Watt</td>
</tr>
<tr>
<td>Queen’s University Belfast, UK</td>
<td>Niall Cavanagh, Gianluca Sarri, Matthew Streeter</td>
</tr>
<tr>
<td>California Polytechnic State University, CA USA</td>
<td>Robert Holtzapple</td>
</tr>
<tr>
<td>Lawrence Livermore National Laboratory, CA USA</td>
<td>Félicie Albert</td>
</tr>
<tr>
<td>SLAC National Accelerator Laboratory and Stanford PULSE Institute, Menlo Park, CA USA</td>
<td>Phil Bucksbaum, Zhijiang Chen, Christine Clarke, Dario Del Sorbo, Angelo Dragone, Frederico Fiuza, Alan Fry, Elias Gerstmayer, Spencer Gessner, Siegfried Glenzer, Tais Gorkhover, Carsten Hast, Mark Hogan, Erik Isele, Chris Kenney, Stephan Kuschel Sebastian Meuren (PI), Rafi Mir-Al Hessami, Brendan O’Shea, David Reis, Douglas Storey, Glen White, Vitaly Yakimenko</td>
</tr>
<tr>
<td>University of California Los Angeles, CA USA</td>
<td>Chan Joshi, Warren Mori, Brian Naranjo, James Rosenzweig, Oliver Williams, Monika Yadav</td>
</tr>
<tr>
<td>University of Colorado Boulder, CO USA</td>
<td>Robert Ariniello, Keenan Hunt-Stone, Michael Litos</td>
</tr>
<tr>
<td>University of Nebraska - Lincoln, NE USA</td>
<td>Ozgur Culfa, Matthias Fuchs, Kyle Jensen, Ethan Welch</td>
</tr>
</tbody>
</table>