E327: Virtual diagnostic for phase space prediction and customization at FACET-II
E325: Automatic tuning for high gain, low energy spread, and low variance PWFA
C. Emma, A. Edelen, S. Gessner, A. Hanuka, B. O'Shea, A. Scheinker, G. White

FACET-II PAC Meeting
October 2020
(Virtual)
<table>
<thead>
<tr>
<th>Diagnostics</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Need information to make decisions)</td>
<td>(How to make decisions)</td>
</tr>
<tr>
<td>Edge Radiation Diagnostics (E326)</td>
<td>Adaptive Feedback (E325)</td>
</tr>
<tr>
<td>Virtual TCAV Predictive Diagnostics (E327)</td>
<td>Learned Control (Reinforcement Learning, New proposal)</td>
</tr>
<tr>
<td>Non-destructive, single shot continuous monitoring of emittance of high-current beams</td>
<td>Stable, high-quality beams through control of unmodeled accelerator behavior</td>
</tr>
<tr>
<td>Longitudinal phase space diagnostics, always on, and for extremely short bunches</td>
<td>Design and control of extreme beams by learning a representative model of FACET-II</td>
</tr>
</tbody>
</table>

Synergistic experiments, individual success enhances all research
E327 Science goals: LPS virtual diagnostic

1. Implement a single-shot non-destructive ML diagnostic to predict the e-beam LPS along the linac.

2. Use the ML-diagnostic to customize/control the LPS for different experiments.
E327: Experimental design, timeline, milestones

<table>
<thead>
<tr>
<th></th>
<th>FY21 Q1</th>
<th>Q2</th>
<th>Q3</th>
<th>Q4</th>
<th>FY22 Q1</th>
<th>Q2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparatory Efforts</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACET-II Simulation studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental demo at LCLS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Writing software linking FACET DAQ to ML code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML model development (1D and 2D predictions)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML diagnostic Deployment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model testing and prototype evaluation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Incorporate spectral measurements and confidence bounds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPS Model implementation and control system GUI development</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantified prediction performance for multiple ML models & experimental configs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Completed ML-controls interface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online LPS diagnostic available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model based LPS feedback testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Online LPS feedback available</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **LPS diagnostic** will leverage available software (FACET DAQ) and hardware with limited installation.
- **Experimental design** follows successful demonstration, safety review is underway.
Motivation

Impossible to predict results of the PWFA process in real time based on models because there is too much uncertainty: PWFA is sensitive to the detailed 6D phase space distribution which is time varying and dominated by complex collective effects.

Existing non-invasive diagnostics cannot image extremely short (1 fs) and intense (100 kA) bunches.

Goals for Adaptive Tuning at FACET-II

- Quickly and automatically control longitudinal current profile.
- Stabilize beam to minimize variance of peak current.
- Minimize variance of the PWFA process (energy gain, emittance growth).
- Maximize energy gain while minimizing emittance growth of PWFA.
- Study the results to extract physics from adaptive feedback guided tuning.

Progress: This experiment is on track and ready for beam

Preliminary simulation studies completed, code design has started.
E327: Evolution of the experiment

2D LPS with sector 20 chicane upgrade

Day 1

Longitudinal Phase Space

Streaked TCAV image

Only 1D projection available with current W-chicane

With S20 upgrade

Spectral data for flagging high current shots

Figure A. Hanuka

Spectral data will provide additional confidence in flagging high current shots

2D LPS will be available after S20 upgrade
Desired facility upgrades

• S20 chicane
• Laser Heater
• Upgrading critical legacy control subsystems
• E325/E327 experiments are on track and ready for beam
• Preparatory work for E327 has included simulation studies and proof of concept experiment at LCLS.
• The diagnostic will predict the LPS along the linac and provide: bunch separation, charge ratio, current ratio and energy difference/energy chirp in drive-witness beams for PWFA experiments.
• Desired upgrades: laser heater will reduce the jitter of current profile and S20 upgrade will allow full LPS (energy-time) prediction.

• **Next steps:** deploy ML diagnostic code on control system. Test on FACET-II machine data. Automate (re)training and develop models for different configurations. Incorporate uncertainty quantification & mitigation measures.
Collaboration

• LANL: A. Scheinker

• First experiments aim to demonstrate LPS reconstruction and one/multiple TCAV locations along FACET-II linac.

• Further experiments will explore on model sensitivities to inputs, prediction accuracy for different configurations, model architecture tuning and automating (re) training.

FACET-II ML experiments will address key issues for transition between demonstration and use in regular operation.
Spectral data for flagging high current shots